1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
#![warn(missing_docs)]

//! A Rust library for estimating quantiles in a stream,
//! using [ClickHouse t-digest][ClickHouseRefTDigest] data structure.
//!
//! The [t-digest][Dunning19] data structure is designed around computing
//! accurate quantile estimates from streaming data. Two t-digests can be
//! merged, making the data structure well suited for map-reduce settings.
//!
//! [Repository]
//!
//! [ClickHouseRefTDigest]: https://clickhouse.com/docs/en/sql-reference/aggregate-functions/reference/quantiletdigest/
//! [Dunning19]: https://github.com/tdunning/t-digest/blob/main/docs/t-digest-paper/histo.pdf
//! [Repository]: https://github.com/vivienm/rust-tdigest-ch
//!
//! # Examples
//!
//! ```
//! use tdigest_ch::TDigest;
//!
//! let mut digest = TDigest::new();
//!
//! // Add some elements.
//! digest.insert(1.0);
//! digest.insert(2.0);
//! digest.insert(3.0);
//!
//! // Get the median of the distribution.
//! let quantile = digest.quantile(0.5);
//! assert_eq!(quantile, 2.0);
//! ```

use std::{
    cmp::Ordering,
    ops::{BitOr, BitOrAssign},
};

/// Stores the weight of points around their mean value.
#[derive(Clone, Copy, Debug, PartialEq)]
struct Centroid {
    mean: f32,
    count: usize,
}

#[cfg(feature = "serde")]
impl serde::Serialize for Centroid {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        (self.mean, self.count).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Centroid {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let (mean, count) = serde::Deserialize::deserialize(deserializer)?;
        Ok(Self { mean, count })
    }
}

#[derive(Clone, Debug, PartialEq)]
struct Config {
    epsilon: f32,
    max_centroids: usize,
    max_unmerged: usize,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            epsilon: 0.01,
            max_centroids: 2048,
            max_unmerged: 2048,
        }
    }
}

#[cfg(feature = "serde")]
impl serde::Serialize for Config {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        (self.epsilon, self.max_centroids, self.max_unmerged).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Config {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let (epsilon, max_centroids, max_unmerged) = serde::Deserialize::deserialize(deserializer)?;
        Ok(Self {
            epsilon,
            max_centroids,
            max_unmerged,
        })
    }
}

/// A `TDigestBuilder` can be used to create a `TDigest` with custom
/// configuration.
///
/// # Examples
///
/// ```
/// use tdigest_ch::TDigestBuilder;
///
/// let mut builder = TDigestBuilder::new();
/// builder.max_centroids(1024);
/// builder.max_unmerged(1024);
///
/// let digest = builder.build();
/// ```
#[derive(Debug)]
pub struct TDigestBuilder {
    config: Config,
}

impl TDigestBuilder {
    /// Constructs a new `TDigestBuilder`.
    ///
    /// This is the same as `TDigest::builder()`.
    pub fn new() -> Self {
        Self {
            config: Config::default(),
        }
    }

    /// Returns a `TDigest` that uses this `TDigestBuilder` configuration.
    pub fn build(self) -> TDigest {
        let centroids = Vec::with_capacity(self.config.max_centroids);
        TDigest {
            config: self.config,
            centroids,
            count: 0,
            unmerged: 0,
        }
    }

    /// Sets the compression parameter of the `TDigest`. Defaults to 0.01.
    pub fn epsilon(&mut self, epsilon: f32) -> &mut Self {
        self.config.epsilon = epsilon;
        self
    }

    /// Sets the maximum number of centroids that the `TDigest` will store.
    /// Defaults to 2048.
    pub fn max_centroids(&mut self, max_centroids: usize) -> &mut Self {
        self.config.max_centroids = max_centroids;
        self
    }

    /// Sets the maximum number of unmerged centroids that the `TDigest` will
    /// store. Defaults to 2048.
    pub fn max_unmerged(&mut self, max_unmerged: usize) -> &mut Self {
        self.config.max_unmerged = max_unmerged;
        self
    }
}

impl Default for TDigestBuilder {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

fn interpolate(x: f32, x1: f32, y1: f32, x2: f32, y2: f32) -> f32 {
    let k = (x - x1) / (x2 - x1);
    (1. - k) * y1 + k * y2
}

#[inline]
fn can_be_merged(l_mean: f64, r_mean: f32) -> bool {
    l_mean == r_mean as f64 || (!l_mean.is_infinite() && !r_mean.is_infinite())
}

fn cmp_f32(lhs: f32, rhs: f32) -> Ordering {
    match lhs.partial_cmp(&rhs) {
        Some(ordering) => ordering,
        None => {
            if lhs.is_nan() {
                if rhs.is_nan() {
                    Ordering::Equal
                } else {
                    Ordering::Greater
                }
            } else {
                Ordering::Less
            }
        }
    }
}

/// T-digest data structure for approximating the quantiles of a distribution.
///
/// # Examples
///
/// ```
/// use tdigest_ch::TDigest;
///
/// let mut digest = TDigest::new();
///
/// // Add some elements.
/// digest.insert(1.0);
/// digest.insert(2.0);
/// digest.insert(3.0);
///
/// // Get the median of the distribution.
/// let quantile = digest.quantile(0.5);
/// assert_eq!(quantile, 2.0);
/// ```
#[derive(Clone, Debug, PartialEq)]
pub struct TDigest {
    config: Config,
    centroids: Vec<Centroid>,
    count: usize,
    unmerged: usize,
}

impl TDigest {
    /// Creates an empty `TDigest`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    /// let digest = TDigest::new();
    /// ```
    #[must_use]
    pub fn new() -> Self {
        Self::builder().build()
    }

    /// Creates a `TDigestBuilder` to configure a `TDigest`.
    ///
    /// This is the same as `TDigestBuilder::new()`.
    #[inline]
    pub fn builder() -> TDigestBuilder {
        TDigestBuilder::new()
    }

    /// Moves all the elements of `other` into `self`, leaving `other` empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut a = TDigest::from([-10.0, 1.0, 2.0, 2.0, 3.0]);
    /// let mut b = TDigest::from([-20.0, 5.0, 43.0]);
    ///
    /// a.append(&mut b);
    ///
    /// assert_eq!(a.len(), 8);
    /// assert!(b.is_empty());
    /// ```
    pub fn append(&mut self, other: &mut TDigest) {
        self.bitor_assign(other);
        other.clear();
    }

    /// Returns the number of elements in the t-digest.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut digest = TDigest::new();
    /// assert_eq!(digest.len(), 0);
    /// digest.insert(1.0);
    /// assert_eq!(digest.len(), 1);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.count
    }

    /// Returns `true` if the t-digest contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut digest = TDigest::new();
    /// assert!(digest.is_empty());
    /// digest.insert(1.0);
    /// assert!(!digest.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Clears the t-digest, removing all values.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut digest = TDigest::new();
    /// digest.insert(1.0);
    /// digest.clear();
    /// assert!(digest.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.centroids.clear();
        self.count = 0;
        self.unmerged = 0;
    }

    /// Returns the estimated quantile of the t-digest.
    ///
    /// This method expects `self` to be mutable, since the t-digest may be
    /// compressed. If you require an immutable, shared reference to compute
    /// quantiles, consider using `quantiles` instead.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut digest = TDigest::from([1.0, 2.0, 3.0, 4.0, 5.0]);
    /// assert_eq!(digest.quantile(0.0), 1.0);
    /// assert_eq!(digest.quantile(0.5), 3.0);
    /// assert_eq!(digest.quantile(1.0), 5.0);
    /// ```
    pub fn quantile(&mut self, level: f64) -> f32 {
        self.compress();
        self.quantile_uncompressed(level)
    }

    fn quantile_uncompressed(&self, level: f64) -> f32 {
        // Calculates the quantile q [0, 1] based on the digest.
        // For an empty digest returns NaN.
        if self.centroids.is_empty() {
            return f32::NAN;
        }

        if self.centroids.len() == 1 {
            return self.centroids[0].mean;
        }

        let x = level * self.count as f64;
        let mut prev_x = 0f64;
        let mut sum = 0usize;
        let mut prev = self.centroids[0];

        for c in self.centroids.iter() {
            let current_x = sum as f64 + c.count as f64 * 0.5;

            if current_x >= x {
                // Special handling of singletons.
                let mut left = prev_x;
                if prev.count == 1 {
                    left += 0.5;
                }
                let mut right = current_x;
                if c.count == 1 {
                    right -= 0.5;
                }

                return {
                    if x <= left {
                        prev.mean
                    } else if x >= right {
                        c.mean
                    } else {
                        interpolate(x as f32, left as f32, prev.mean, right as f32, c.mean)
                    }
                };
            }

            sum += c.count;
            prev = *c;
            prev_x = current_x;
        }

        self.centroids.last().unwrap().mean
    }

    /// Creates an immutable quantile estimator from the t-digest.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::thread;
    ///
    /// use tdigest_ch::TDigest;
    ///
    /// let mut digest = TDigest::from([1.0, 2.0, 3.0, 4.0, 5.0]);
    /// let quantiles = digest.quantiles();
    ///
    /// thread::scope(|s| {
    ///     s.spawn(|| {
    ///         assert_eq!(quantiles.get(0.0), 1.0);
    ///     });
    ///     s.spawn(|| {
    ///         assert_eq!(quantiles.get(0.5), 3.0);
    ///     });
    ///     s.spawn(|| {
    ///         assert_eq!(quantiles.get(1.0), 5.0);
    ///     });
    /// });
    /// ```
    pub fn quantiles(&mut self) -> Quantiles<'_> {
        self.compress();
        Quantiles { digest: self }
    }

    /// Adds a value to the t-digest.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut digest = TDigest::new();
    ///
    /// digest.insert(1.0);
    /// digest.insert(2.0);
    /// assert_eq!(digest.len(), 2);
    /// ```
    #[inline]
    pub fn insert(&mut self, value: f32) {
        self.insert_many(value, 1);
    }

    /// Adds multiple values to the t-digest.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut digest = TDigest::new();
    ///
    /// digest.insert_many(1.0, 1);
    /// digest.insert_many(2.0, 2);
    /// assert_eq!(digest.len(), 3);
    /// ```
    pub fn insert_many(&mut self, value: f32, count: usize) {
        if count == 0 || value.is_nan() {
            // Count 0 breaks compress() assumptions, NaN breaks sort(). We treat them as no
            // sample.
            return;
        }
        self.insert_centroid(&Centroid { mean: value, count });
    }

    fn insert_centroid(&mut self, centroid: &Centroid) {
        self.count += centroid.count;
        self.unmerged += 1;
        self.centroids.push(*centroid);
        if self.unmerged > self.config.max_unmerged {
            self.compress();
        }
    }

    fn compress(&mut self) {
        // Performs compression of accumulated centroids
        // When merging, the invariant is retained to the maximum size of each centroid
        // that does not exceed `4 q (1 - q) \ delta N`.
        if self.unmerged > 0 || self.centroids.len() > self.config.max_centroids {
            self.centroids.sort_by(|l, r| cmp_f32(l.mean, r.mean));

            let mut l_index = 0;

            // Compiler is unable to do this optimization.
            let count_epsilon_4 = self.count as f64 * self.config.epsilon as f64 * 4.;
            let mut sum = 0;
            let (mut l_mean, mut l_count) = {
                let l = self.centroids.first().unwrap();
                (l.mean as f64, l.count)
            };
            for r_index in 1..self.centroids.len() {
                let r = self.centroids[r_index];
                // N.B. We cannot merge all the same values into single centroids because this
                // will lead to unbalanced compression and wrong results.
                // For more information see: https://arxiv.org/abs/1902.04023.

                // The ratio of the part of the histogram to l, including the half l to the
                // entire histogram. That is, what level quantile in position l.
                let ql = (sum as f64 + l_count as f64 * 0.5) / self.count as f64;
                let mut err = ql * (1. - ql);

                // The ratio of the portion of the histogram to l, including l and half r to the
                // entire histogram. That is, what level is the quantile in position r.
                let qr = (sum as f64 + l_count as f64 + r.count as f64 * 0.5) / self.count as f64;
                let err2 = qr * (1. - qr);

                if err > err2 {
                    err = err2;
                }

                let k = count_epsilon_4 * err;

                // The ratio of the weight of the glued column pair to all values is not
                // greater, than epsilon multiply by a certain quadratic
                // coefficient, which in the median is 1 (4 * 1/2 * 1/2), and at
                // the edges decreases and is approximately equal to the
                // distance to the edge * 4.

                if l_count as f64 + r.count as f64 <= k && can_be_merged(l_mean, r.mean) {
                    // It is possible to merge left and right.
                    // The left column "eats" the right.
                    l_count += r.count;
                    if r.mean as f64 != l_mean {
                        // Handling infinities of the same sign well.
                        // Symmetric algo (M1*C1 + M2*C2)/(C1+C2) is numerically better, but slower.
                        l_mean += r.count as f64 * (r.mean as f64 - l_mean) / l_count as f64;
                    }
                    self.centroids[l_index] = Centroid {
                        mean: l_mean as f32,
                        count: l_count,
                    };
                } else {
                    // Not enough capacity, check the next pair.
                    // Not l_count, otherwise actual sum of elements will be different.
                    sum += self.centroids[l_index].count;
                    l_index += 1;

                    // We skip all the values "eaten" earlier.
                    while l_index != r_index {
                        self.centroids[l_index].count = 0;
                        l_index += 1;
                    }
                    (l_mean, l_count) = {
                        let l = self.centroids[l_index];
                        (l.mean as f64, l.count)
                    };
                }
            }
            // Update count, it might be different due to += inaccuracy
            self.count = sum + l_count;

            // At the end of the loop, all values to the right of l were "eaten".
            self.centroids.retain(|c| c.count != 0);
            self.unmerged = 0;
        }

        // Ensures centroids.size() < max_centroids, independent of unprovable floating
        // point blackbox above.
        self.compress_brute();
    }

    fn compress_brute(&mut self) {
        if self.centroids.len() <= self.config.max_centroids {
            return;
        }
        let batch_size =  // At least 2.
            (self.centroids.len() + self.config.max_centroids - 1) / self.config.max_centroids;
        debug_assert!(batch_size >= 2);

        let mut l_index = 0;
        let mut sum = 0;
        // We have high-precision temporaries for numeric stability
        let (mut l_mean, mut l_count) = {
            let l = self.centroids.first().unwrap();
            (l.mean as f64, l.count)
        };
        let mut batch_pos = 0usize;

        for r_index in 1..self.centroids.len() {
            let r = self.centroids[r_index];
            if batch_pos < batch_size - 1 {
                // The left column "eats" the right. Middle of the batch.
                l_count += r.count;
                if r.mean as f64 != l_mean {
                    // Handling infinities of the same sign well.
                    // Symmetric algo (M1*C1 + M2*C2)/(C1+C2) is numerically better, but slower.
                    l_mean += r.count as f64 * (r.mean as f64 - l_mean) / l_count as f64;
                }
                self.centroids[l_index] = Centroid {
                    mean: l_mean as f32,
                    count: l_count,
                };
                batch_pos += 1;
            } else {
                // End of the batch, start the next one.
                if !self.centroids[l_index].mean.is_nan() {
                    // Skip writing batch result if we compressed something to nan.
                    // Not l_count, otherwise actual sum of elements will be different.
                    sum += self.centroids[l_index].count;
                    l_index += 1;
                }

                while l_index != r_index {
                    // We skip all the values "eaten" earlier.
                    self.centroids[l_index].count = 0;
                    l_index += 1;
                }
                (l_mean, l_count) = {
                    let l = self.centroids[l_index];
                    (l.mean as f64, l.count)
                };
                batch_pos = 0;
            }
        }

        if !self.centroids[l_index].mean.is_nan() {
            // Update count, it might be different due to += inaccuracy.
            self.count = sum + l_count;
        } else {
            // Skip writing last batch if (super unlikely) it's nan.
            self.count = sum;
            self.centroids[l_index].count = 0;
        }
        self.centroids.retain(|c| c.count != 0);
        // Here centroids.len() <= params.max_centroids.
        debug_assert!(self.centroids.len() <= self.config.max_centroids);
    }
}

impl BitOr<&TDigest> for &TDigest {
    type Output = TDigest;

    /// Returns the union of `self` and `rhs` as a new `TDigest`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let a = TDigest::from([1.0, 2.0, 3.0]);
    /// let b = TDigest::from([3.0, 4.0, 5.0]);
    ///
    /// let mut c = &a | &b;
    ///
    /// assert_eq!(c.len(), 6);
    /// assert_eq!(c.quantile(0.5), 3.0);
    /// ```
    fn bitor(self, rhs: &TDigest) -> TDigest {
        let mut result = self.clone();
        result |= rhs;
        result
    }
}

impl BitOrAssign<&TDigest> for TDigest {
    /// Merges `self` and `rhs` into `self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut a = TDigest::from([1.0, 2.0, 3.0]);
    /// let b = TDigest::from([3.0, 4.0, 5.0]);
    ///
    /// a |= &b;
    ///
    /// assert_eq!(a.len(), 6);
    /// assert_eq!(a.quantile(0.5), 3.0);
    /// ```
    fn bitor_assign(&mut self, rhs: &TDigest) {
        for c in &rhs.centroids {
            self.insert_centroid(c);
        }
    }
}

impl Default for TDigest {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl Extend<f32> for TDigest {
    fn extend<I: IntoIterator<Item = f32>>(&mut self, iter: I) {
        for value in iter {
            self.insert(value);
        }
    }
}

impl<const N: usize> From<[f32; N]> for TDigest {
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let digest1 = TDigest::from([1.0, 2.0, 3.0, 4.0]);
    /// let digest2: TDigest = [1.0, 2.0, 3.0, 4.0].into();
    /// assert_eq!(digest1, digest2);
    /// ```
    fn from(array: [f32; N]) -> Self {
        let mut digest = TDigest::new();
        for value in array.iter() {
            digest.insert(*value);
        }
        digest
    }
}

impl FromIterator<f32> for TDigest {
    fn from_iter<I: IntoIterator<Item = f32>>(iter: I) -> Self {
        let mut digest = TDigest::new();
        digest.extend(iter);
        digest
    }
}

#[cfg(feature = "serde")]
impl serde::Serialize for TDigest {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        (&self.config, &self.centroids, self.count, self.unmerged).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for TDigest {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let (config, centroids, count, unmerged) = serde::Deserialize::deserialize(deserializer)?;
        Ok(Self {
            config,
            centroids,
            count,
            unmerged,
        })
    }
}

/// Estimates quantiles of a t-digest.
///
/// This `struct` is created by the [`quantiles`] method on [`TDigest`]. See its
/// documentation for more.
///
/// [`quantiles`]: TDigest::quantiles
pub struct Quantiles<'a> {
    digest: &'a TDigest,
}

impl<'a> Quantiles<'a> {
    /// Returns the estimated quantile of the t-digest.
    ///
    /// # Examples
    ///
    /// ```
    /// use tdigest_ch::TDigest;
    ///
    /// let mut digest = TDigest::from([1.0, 2.0, 3.0, 4.0, 5.0]);
    /// let quantiles = digest.quantiles();
    /// assert_eq!(quantiles.get(0.0), 1.0);
    /// assert_eq!(quantiles.get(0.5), 3.0);
    /// assert_eq!(quantiles.get(1.0), 5.0);
    /// ```
    pub fn get(&self, level: f64) -> f32 {
        self.digest.quantile_uncompressed(level)
    }
}