uniq_ch/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
//! A Rust library for counting distinct elements in a stream,
//! using [ClickHouse uniq][ClickHouseRefUniq] data structure.
//!
//! This uses [BJKST][BarYossef+02], a probabilistic algorithm that relies on
//! adaptive sampling and provides fast, accurate and deterministic results.
//! Two BJKSTs can be merged, making the data structure well suited for
//! map-reduce settings.
//!
//! [Repository]
//!
//! [ClickHouseRefUniq]: https://clickhouse.com/docs/en/sql-reference/aggregate-functions/reference/uniq/
//! [BarYossef+02]: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6276
//! [Repository]: https://github.com/vivienm/rust-uniq-ch
//!
//! # Examples
//!
//! ```
//! use uniq_ch::Bjkst;
//!
//! let mut bjkst = Bjkst::new();
//!
//! // Add some elements, with duplicates.
//! bjkst.extend(0..75_000);
//! bjkst.extend(25_000..100_000);
//!
//! // Count the distinct elements.
//! assert!((99_000..101_000).contains(&bjkst.len()));
//! ```

use std::{
    collections::hash_map::DefaultHasher,
    hash::{BuildHasher, BuildHasherDefault, Hash, Hasher},
    marker::PhantomData,
    num::NonZeroU64,
    ops::{BitOr, BitOrAssign},
};

pub use crate::precision::Precision;

pub mod precision;

/// A [BJKST][BarYossef+02] data structure to estimate the number of distinct
/// elements in a data stream.
///
/// [BarYossef+02]: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6276
///
/// # Examples
///
/// ```
/// use uniq_ch::Bjkst;
///
/// let mut bjkst = Bjkst::new();
///
/// // Add some elements, with duplicates.
/// bjkst.extend(0..75_000);
/// bjkst.extend(25_000..100_000);
///
/// // Count the distinct elements.
/// assert!((99_000..101_000).contains(&bjkst.len()));
/// ```

#[derive(Debug)]
pub struct Bjkst<T, S = BuildHasherDefault<DefaultHasher>> {
    /// For typechecking.
    phantom: PhantomData<T>,
    /// Computes hashes of inserted elements.
    build_hasher: S,
    /// The number of elements in the table.
    count: usize,
    /// The current size of the table, as a power of `2`.
    size_degree: u8,
    /// Skip elements not divisible by `2 ** skip_degree`.
    skip_degree: u8,
    /// The maximum number of elements in the table, as a power of `2`.
    /// The table is twice bigger than this value.
    precision: Precision,
    /// An element with a hash value of `0` has been inserted.
    has_zero: bool,
    /// The table of hash values.
    hashes: Vec<Option<NonZeroU64>>,
}

impl<T> Bjkst<T, BuildHasherDefault<DefaultHasher>> {
    /// Creates an empty `Bjkst`.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let bjkst = Bjkst::<usize>::new();
    /// ```
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }
}

impl<T, S> Bjkst<T, S>
where
    S: Default,
{
    /// Creates an empty `Bjkst` with the specified precision.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::{Bjkst, Precision};
    ///
    /// let bjkst = Bjkst::<usize>::with_precision(Precision::P10);
    /// assert_eq!(bjkst.precision(), Precision::P10);
    /// ```
    #[inline]
    pub fn with_precision(precision: Precision) -> Self {
        Self::with_precision_and_hasher(precision, S::default())
    }
}

impl<T, S> Bjkst<T, S> {
    /// Creates an empty `Bjkst` with the specified precision, using `hasher` to
    /// hash values.
    ///
    /// Warning: `hasher` is normally randomly generated, and is designed to
    /// allow `Bjkst`s to be resistant to attacks that cause many collisions
    /// and very poor performance. Setting it manually using this function
    /// can expose a DoS attack vector.
    ///
    /// The `hasher` passed should implement the [`BuildHasher`] trait for the
    /// BJKST to be useful, see its documentation for details.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::hash_map::RandomState;
    ///
    /// use uniq_ch::{Bjkst, Precision};
    ///
    /// let hasher = RandomState::new();
    /// let mut bjkst = Bjkst::with_precision_and_hasher(Precision::P10, hasher);
    /// bjkst.insert(&2);
    /// ```
    pub fn with_precision_and_hasher(precision: Precision, hasher: S) -> Self {
        let size_degree = precision.initial_size_degree();
        Self {
            phantom: PhantomData,
            build_hasher: hasher,
            count: 0,
            size_degree,
            precision,
            skip_degree: 0,
            has_zero: false,
            // Precision range guarantees to avoid overflows.
            hashes: vec![None; 1usize << size_degree],
        }
    }

    /// Creates a new empty `Bjkst` which will use the given hasher to hash
    /// values.
    ///
    /// Warning: `hasher` is normally randomly generated, and is designed to
    /// allow `Bjkst`s to be resistant to attacks that cause many collisions
    /// and very poor performance. Setting it manually using this function
    /// can expose a DoS attack vector.
    ///
    /// The `hasher` passed should implement the [`BuildHasher`] trait for the
    /// BJKST to be useful, see its documentation for details.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::hash_map::RandomState;
    ///
    /// use uniq_ch::Bjkst;
    ///
    /// let hasher = RandomState::new();
    /// let mut bjkst = Bjkst::with_hasher(hasher);
    /// bjkst.insert(&2);
    /// ```
    #[inline]
    pub fn with_hasher(hasher: S) -> Self {
        Self::with_precision_and_hasher(Precision::default(), hasher)
    }

    /// Returns the precision of the `Bjkst`.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::{Bjkst, Precision};
    ///
    /// let bjkst = Bjkst::<usize>::with_precision(Precision::P10);
    /// assert_eq!(bjkst.precision(), Precision::P10);
    /// ```
    #[inline]
    pub const fn precision(&self) -> Precision {
        self.precision
    }

    /// Returns a reference to the BJKST data structure's [`BuildHasher`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::hash_map::RandomState;
    ///
    /// use uniq_ch::Bjkst;
    ///
    /// let hasher = RandomState::new();
    /// let bjkst = Bjkst::<usize, _>::with_hasher(hasher);
    /// let hasher: &RandomState = bjkst.hasher();
    /// ```
    #[inline]
    pub fn hasher(&self) -> &S {
        &self.build_hasher
    }

    /// Clears the BJKST data structure, removing all values.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let mut bjkst = Bjkst::new();
    /// bjkst.insert(&1);
    /// bjkst.clear();
    /// assert!(bjkst.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.count = 0;
        self.size_degree = self.precision.initial_size_degree();
        self.skip_degree = 0;
        self.has_zero = false;
        self.hashes.truncate(1 << self.size_degree);
        self.hashes.fill(None);
    }

    /// Returns `true` if the BJKST data structure contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let mut bjkst = Bjkst::new();
    /// assert!(bjkst.is_empty());
    /// bjkst.insert(&1);
    /// assert!(!bjkst.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.count == 0
    }

    /// Adds a hash value to the BJKST data structure.
    ///
    /// Returns whether the value was newly inserted. That is:
    ///
    /// - If the value is not skipped, and the BJKST data structure did not
    ///   previously contain this value, `true` is returned.
    /// - If the value is skipped or the BJKST data structure already contained
    ///   this value, `false` is returned.
    ///
    /// This may be handy when the hash is previously computed, to avoid
    /// computing twice. Hash values need to be uniformly distributed over
    /// [u64] for an accurate total count.
    ///
    /// In all other cases, use [`insert`][Bjkst::insert] instead.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let mut bjkst = Bjkst::<usize>::new();
    ///
    /// assert_eq!(bjkst.insert_hash(0x12345678), true);
    /// assert_eq!(bjkst.insert_hash(0x12345678), false);
    /// assert_eq!(bjkst.len(), 1);
    /// ```
    pub fn insert_hash(&mut self, hash: u64) -> bool {
        if self.should_keep(hash) {
            let count = self.count;
            self.do_insert(hash);
            let inserted = count != self.count;
            self.adjust_to_fit();
            inserted
        } else {
            false
        }
    }

    /// Determines if an element should be kept, that is, its value is divisible
    /// by `2 ** skip_degree`.
    #[inline]
    fn should_keep(&self, hash: u64) -> bool {
        hash == (hash >> self.skip_degree) << self.skip_degree
    }

    /// Unconditionally inserts a value into the BJKST data structure.
    fn do_insert(&mut self, hash: u64) {
        let hash = match NonZeroU64::new(hash) {
            None if self.has_zero => return,
            None => {
                self.count += 1;
                self.has_zero = true;
                return;
            }
            Some(hash) => hash,
        };

        let mut i = self.expected_index(hash);
        while let Some(hash_i) = self.hashes[i] {
            if hash_i == hash {
                break;
            }
            i += 1;
            i %= self.hashes.len();
        }
        if self.hashes[i].is_none() {
            self.hashes[i] = Some(hash);
            self.count += 1;
        }
    }

    /// Resize the BJKST data structure if the buffer is full enough.
    /// If there are too many items, then throw half of them and repeat until
    /// their count is below the threshold.
    fn adjust_to_fit(&mut self) {
        if self.count > self.fill_threshold() {
            let purge_threshold = self.purge_threshold();
            if self.count > purge_threshold {
                while self.count > purge_threshold {
                    self.skip_degree += 1;
                    self.purge();
                }
            } else {
                self.grow();
            }
        }
    }

    #[inline]
    fn expected_index(&self, hash: NonZeroU64) -> usize {
        (hash.get() as usize >> self.precision.bits_to_skip()) % self.hashes.len()
    }

    #[inline]
    const fn fill_threshold(&self) -> usize {
        1 << (self.size_degree - 1)
    }

    #[inline]
    const fn purge_threshold(&self) -> usize {
        1 << self.precision.get()
    }

    /// Purge the BJKST data structure, deleting all values not divisible by `2
    /// ** skip_degree`. This must be called after increasing the skip
    /// degree.
    fn purge(&mut self) {
        for i in 0..self.hashes.len() {
            let hash = self.hashes[i];
            if let Some(hash) = hash {
                if !self.should_keep(hash.get()) {
                    self.hashes[i] = None;
                    self.count -= 1;
                } else if i != self.expected_index(hash) {
                    // After removing the elements, there may have been room for items,
                    // which were placed further than necessary, due to a collision.
                    // You need to move them.
                    self.hashes[i] = None;
                    self.reinsert(hash);
                }
            }
        }

        // We must process first collision resolution chain once again.
        // Look at the comment in function `grow_to`.
        for i in 0..self.hashes.len() {
            let hash = self.hashes[i];
            if let Some(hash) = hash {
                self.hashes[i] = None;
                self.reinsert(hash);
            } else {
                break;
            }
        }
    }

    /// Doubles the size of the buffer.
    #[inline]
    fn grow(&mut self) {
        self.grow_to(self.size_degree + 1)
    }

    /// Increases the size of the buffer up to `2 ** size_degree`.
    fn grow_to(&mut self, size_degree: u8) {
        let old_size = self.hashes.len();

        // Expand the space.
        self.hashes.resize(1 << size_degree, None);
        self.size_degree = size_degree;

        // Now some items may need to be moved to a new location.
        // Each element can stay in place, or move to a new location "on the right",
        // or move to the left of the collision resolution chain, because the elements
        // to the left of it have been moved to the new "right" location.
        //
        // There is also a special case:
        // If the element was to be at the end of the old buffer (`x`)
        // [        x] but is at the beginning because of the collision
        // resolution chain (`o`)       [o       x] then after resizing, it will
        // first be out of place again.                     [        xo        ]
        // Transferring it to the right location requires,
        // after transferring all elements from the old half of the buffer,
        // [         o   x    ] to process the tail of the collision resolution
        // chain that follows.           [        o    x    ] This is why we
        // don't necessarily stop when `i >= old_size`,
        for i in 0.. {
            let hash_i = self.hashes[i];
            let hash_i = match hash_i {
                None if i >= old_size => break,
                None => continue,
                Some(hash) => hash,
            };

            let mut j = self.expected_index(hash_i);

            // The element is in its place.
            if j == i {
                continue;
            }

            let mut hash_h = self.hashes[j];
            while let Some(hash_j) = hash_h {
                if hash_j == hash_i {
                    break;
                }
                j += 1;
                j %= self.hashes.len();
                hash_h = self.hashes[j];
            }

            // The element remained in its place.
            if let Some(hash_j) = hash_h {
                if hash_j == hash_i {
                    continue;
                }
            }

            self.hashes[j] = Some(hash_i);
            self.hashes[i] = None;
        }
    }

    /// Reinserts a value into the BJKST data structure.
    /// Used when increasing the size of the buffer, as well as when reading
    /// from a file.
    fn reinsert(&mut self, hash: NonZeroU64) {
        let mut i = self.expected_index(hash);
        while self.hashes[i].is_some() {
            i += 1;
            i %= self.hashes.len();
        }
        self.hashes[i] = Some(hash);
    }
}

impl<T, S> Bjkst<T, S>
where
    T: Hash,
    S: BuildHasher,
{
    /// Adds a value to the BJKST data structure.
    ///
    /// Returns whether the value was newly inserted. That is:
    ///
    /// - If the value is not skipped, and the BJKST data structure did not
    ///   previously contain this value, `true` is returned.
    /// - If the value is skipped or the BJKST data structure already contained
    ///   this value, `false` is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let mut bjkst = Bjkst::new();
    ///
    /// assert_eq!(bjkst.insert(&2), true);
    /// assert_eq!(bjkst.insert(&2), false);
    /// assert_eq!(bjkst.len(), 1);
    /// ```
    pub fn insert(&mut self, value: &T) -> bool {
        self.insert_hash(self.hash(value))
    }

    fn hash<Q>(&self, value: &Q) -> u64
    where
        Q: Hash + ?Sized,
    {
        self.build_hasher.hash_one(value)
    }

    /// Calculates the approximate number of different elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let mut bjkst = Bjkst::new();
    /// for i in 0..100_000 {
    ///     bjkst.insert(&i);
    /// }
    /// assert!((99_000..=101_000).contains(&bjkst.len()));
    /// ```
    pub fn len(&self) -> usize {
        if 0 == self.skip_degree {
            return self.count;
        }

        let mut res = self.count as u64 * (1 << self.skip_degree);

        // Pseudo-random remainder - in order to hide that the number is divisible by a
        // power of two.
        res += self.hash(&self.count) & ((1 << self.skip_degree) - 1);

        // Correction of a systematic error due to collisions during hashing.
        // Seems broken due to rounding errors, and not needed with 64-bit hashes.
        // let p64 = 2.0f64.powi(64);
        // f64::round(p64 * (f64::ln(p64) - f64::ln(p64 - res as f64))) as usize
        res as usize
    }
}

impl<T, H> BitOr<&Bjkst<T, BuildHasherDefault<H>>> for &Bjkst<T, BuildHasherDefault<H>>
where
    T: Hash,
    H: Default + Hasher,
{
    type Output = Bjkst<T, BuildHasherDefault<H>>;

    /// Returns the union of `self` and `rhs` as a new `Bjkst<S, T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let lhs = Bjkst::<i32>::from_iter(0..75_000);
    /// let rhs = Bjkst::<i32>::from_iter(25_000..100_000);
    /// let bjkst = &lhs | &rhs;
    /// assert!((99_000..=101_000).contains(&bjkst.len()));
    /// ```
    fn bitor(self, rhs: &Bjkst<T, BuildHasherDefault<H>>) -> Self::Output {
        let mut bjkst = Bjkst {
            skip_degree: self.skip_degree.max(rhs.skip_degree),
            ..Default::default()
        };

        if self.has_zero || rhs.has_zero {
            bjkst.has_zero = true;
            bjkst.count = 1;
        }

        for hash in self.hashes.iter().chain(rhs.hashes.iter()).flatten() {
            bjkst.insert_hash(hash.get());
        }
        bjkst
    }
}

impl<T, H> BitOrAssign<&Bjkst<T, BuildHasherDefault<H>>> for Bjkst<T, BuildHasherDefault<H>>
where
    T: Hash,
    H: Default + Hasher,
{
    /// Merges `self` and `rhs` into `self`.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let mut lhs = Bjkst::<i32>::from_iter(1..75_000);
    /// let rhs = Bjkst::<i32>::from_iter(25_000..100_000);
    /// lhs |= &rhs;
    /// assert!((99_000..=101_000).contains(&lhs.len()));
    /// ```
    fn bitor_assign(&mut self, rhs: &Bjkst<T, BuildHasherDefault<H>>) {
        if rhs.skip_degree > self.skip_degree {
            self.skip_degree = rhs.skip_degree;
            self.purge();
        }

        if !self.has_zero && rhs.has_zero {
            self.has_zero = true;
            self.count += 1;
            self.adjust_to_fit();
        }

        for hash in rhs.hashes.iter().flatten() {
            self.insert_hash(hash.get());
        }
    }
}

impl<T, S> Clone for Bjkst<T, S>
where
    S: Clone,
{
    fn clone(&self) -> Self {
        Self {
            phantom: self.phantom,
            build_hasher: self.build_hasher.clone(),
            count: self.count,
            size_degree: self.size_degree,
            precision: self.precision,
            skip_degree: self.skip_degree,
            has_zero: self.has_zero,
            hashes: self.hashes.clone(),
        }
    }
}

impl<T, S> Default for Bjkst<T, S>
where
    S: Default,
{
    #[inline]
    fn default() -> Self {
        Self::with_hasher(S::default())
    }
}

impl<'a, T, S> Extend<&'a T> for Bjkst<T, S>
where
    T: Hash + 'a,
    S: BuildHasher,
{
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = &'a T>,
    {
        for value in iter {
            self.insert(value);
        }
    }
}

impl<T, S> Extend<T> for Bjkst<T, S>
where
    T: Hash,
    S: BuildHasher,
{
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = T>,
    {
        for value in iter {
            self.insert(&value);
        }
    }
}

impl<'a, T, S, const N: usize> From<[&'a T; N]> for Bjkst<T, S>
where
    T: Hash,
    S: BuildHasher + Default,
{
    #[inline]
    fn from(values: [&'a T; N]) -> Self {
        Self::from_iter(values)
    }
}

impl<T, S, const N: usize> From<[T; N]> for Bjkst<T, S>
where
    T: Hash,
    S: BuildHasher + Default,
{
    /// Creates a new `Bjkst<T, S>` from an array of `T`.
    ///
    /// # Examples
    ///
    /// ```
    /// use uniq_ch::Bjkst;
    ///
    /// let bjkst1 = Bjkst::<i32>::from([1, 2, 3, 4, 5]);
    /// let bjkst2: Bjkst<i32> = [1, 2, 3, 4, 5].into();
    /// assert_eq!(bjkst1.len(), bjkst2.len());
    /// ```
    #[inline]
    fn from(values: [T; N]) -> Self {
        Self::from_iter(values)
    }
}

impl<'a, T, S> FromIterator<&'a T> for Bjkst<T, S>
where
    T: Hash + 'a,
    S: BuildHasher + Default,
{
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = &'a T>,
    {
        let mut bjkst = Bjkst::default();
        bjkst.extend(iter);
        bjkst
    }
}

impl<T, S> FromIterator<T> for Bjkst<T, S>
where
    T: Hash,
    S: BuildHasher + Default,
{
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = T>,
    {
        let mut bjkst = Bjkst::default();
        bjkst.extend(iter);
        bjkst
    }
}

#[cfg(feature = "serde")]
impl<T, S> serde::Serialize for Bjkst<T, S>
where
    S: Default,
{
    fn serialize<R>(&self, serializer: R) -> Result<R::Ok, R::Error>
    where
        R: serde::Serializer,
    {
        (
            self.count,
            self.size_degree,
            self.precision,
            self.skip_degree,
            self.has_zero,
            &self.hashes,
        )
            .serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, T, S> serde::Deserialize<'de> for Bjkst<T, S>
where
    S: Default,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let (count, size_degree, precision, skip_degree, has_zero, hashes) =
            serde::Deserialize::deserialize(deserializer)?;
        Ok(Self {
            count,
            size_degree,
            precision,
            skip_degree,
            has_zero,
            hashes,
            ..Self::default()
        })
    }
}